\(\int \frac {\log ^2(c (a+b x^2)^p)}{x^3} \, dx\) [81]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [C] (warning: unable to verify)
   Fricas [F]
   Sympy [F]
   Maxima [A] (verification not implemented)
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 18, antiderivative size = 80 \[ \int \frac {\log ^2\left (c \left (a+b x^2\right )^p\right )}{x^3} \, dx=\frac {b p \log \left (-\frac {b x^2}{a}\right ) \log \left (c \left (a+b x^2\right )^p\right )}{a}-\frac {\left (a+b x^2\right ) \log ^2\left (c \left (a+b x^2\right )^p\right )}{2 a x^2}+\frac {b p^2 \operatorname {PolyLog}\left (2,1+\frac {b x^2}{a}\right )}{a} \]

[Out]

b*p*ln(-b*x^2/a)*ln(c*(b*x^2+a)^p)/a-1/2*(b*x^2+a)*ln(c*(b*x^2+a)^p)^2/a/x^2+b*p^2*polylog(2,1+b*x^2/a)/a

Rubi [A] (verified)

Time = 0.05 (sec) , antiderivative size = 80, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 4, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.222, Rules used = {2504, 2444, 2441, 2352} \[ \int \frac {\log ^2\left (c \left (a+b x^2\right )^p\right )}{x^3} \, dx=-\frac {\left (a+b x^2\right ) \log ^2\left (c \left (a+b x^2\right )^p\right )}{2 a x^2}+\frac {b p \log \left (-\frac {b x^2}{a}\right ) \log \left (c \left (a+b x^2\right )^p\right )}{a}+\frac {b p^2 \operatorname {PolyLog}\left (2,\frac {b x^2}{a}+1\right )}{a} \]

[In]

Int[Log[c*(a + b*x^2)^p]^2/x^3,x]

[Out]

(b*p*Log[-((b*x^2)/a)]*Log[c*(a + b*x^2)^p])/a - ((a + b*x^2)*Log[c*(a + b*x^2)^p]^2)/(2*a*x^2) + (b*p^2*PolyL
og[2, 1 + (b*x^2)/a])/a

Rule 2352

Int[Log[(c_.)*(x_)]/((d_) + (e_.)*(x_)), x_Symbol] :> Simp[(-e^(-1))*PolyLog[2, 1 - c*x], x] /; FreeQ[{c, d, e
}, x] && EqQ[e + c*d, 0]

Rule 2441

Int[((a_.) + Log[(c_.)*((d_) + (e_.)*(x_))^(n_.)]*(b_.))/((f_.) + (g_.)*(x_)), x_Symbol] :> Simp[Log[e*((f + g
*x)/(e*f - d*g))]*((a + b*Log[c*(d + e*x)^n])/g), x] - Dist[b*e*(n/g), Int[Log[(e*(f + g*x))/(e*f - d*g)]/(d +
 e*x), x], x] /; FreeQ[{a, b, c, d, e, f, g, n}, x] && NeQ[e*f - d*g, 0]

Rule 2444

Int[((a_.) + Log[(c_.)*((d_) + (e_.)*(x_))^(n_.)]*(b_.))^(p_)/((f_.) + (g_.)*(x_))^2, x_Symbol] :> Simp[(d + e
*x)*((a + b*Log[c*(d + e*x)^n])^p/((e*f - d*g)*(f + g*x))), x] - Dist[b*e*n*(p/(e*f - d*g)), Int[(a + b*Log[c*
(d + e*x)^n])^(p - 1)/(f + g*x), x], x] /; FreeQ[{a, b, c, d, e, f, g, n}, x] && NeQ[e*f - d*g, 0] && GtQ[p, 0
]

Rule 2504

Int[((a_.) + Log[(c_.)*((d_) + (e_.)*(x_)^(n_))^(p_.)]*(b_.))^(q_.)*(x_)^(m_.), x_Symbol] :> Dist[1/n, Subst[I
nt[x^(Simplify[(m + 1)/n] - 1)*(a + b*Log[c*(d + e*x)^p])^q, x], x, x^n], x] /; FreeQ[{a, b, c, d, e, m, n, p,
 q}, x] && IntegerQ[Simplify[(m + 1)/n]] && (GtQ[(m + 1)/n, 0] || IGtQ[q, 0]) &&  !(EqQ[q, 1] && ILtQ[n, 0] &&
 IGtQ[m, 0])

Rubi steps \begin{align*} \text {integral}& = \frac {1}{2} \text {Subst}\left (\int \frac {\log ^2\left (c (a+b x)^p\right )}{x^2} \, dx,x,x^2\right ) \\ & = -\frac {\left (a+b x^2\right ) \log ^2\left (c \left (a+b x^2\right )^p\right )}{2 a x^2}+\frac {(b p) \text {Subst}\left (\int \frac {\log \left (c (a+b x)^p\right )}{x} \, dx,x,x^2\right )}{a} \\ & = \frac {b p \log \left (-\frac {b x^2}{a}\right ) \log \left (c \left (a+b x^2\right )^p\right )}{a}-\frac {\left (a+b x^2\right ) \log ^2\left (c \left (a+b x^2\right )^p\right )}{2 a x^2}-\frac {\left (b^2 p^2\right ) \text {Subst}\left (\int \frac {\log \left (-\frac {b x}{a}\right )}{a+b x} \, dx,x,x^2\right )}{a} \\ & = \frac {b p \log \left (-\frac {b x^2}{a}\right ) \log \left (c \left (a+b x^2\right )^p\right )}{a}-\frac {\left (a+b x^2\right ) \log ^2\left (c \left (a+b x^2\right )^p\right )}{2 a x^2}+\frac {b p^2 \text {Li}_2\left (1+\frac {b x^2}{a}\right )}{a} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.02 (sec) , antiderivative size = 93, normalized size of antiderivative = 1.16 \[ \int \frac {\log ^2\left (c \left (a+b x^2\right )^p\right )}{x^3} \, dx=\frac {b p \log \left (-\frac {b x^2}{a}\right ) \log \left (c \left (a+b x^2\right )^p\right )}{a}-\frac {b \log ^2\left (c \left (a+b x^2\right )^p\right )}{2 a}-\frac {\log ^2\left (c \left (a+b x^2\right )^p\right )}{2 x^2}+\frac {b p^2 \operatorname {PolyLog}\left (2,\frac {a+b x^2}{a}\right )}{a} \]

[In]

Integrate[Log[c*(a + b*x^2)^p]^2/x^3,x]

[Out]

(b*p*Log[-((b*x^2)/a)]*Log[c*(a + b*x^2)^p])/a - (b*Log[c*(a + b*x^2)^p]^2)/(2*a) - Log[c*(a + b*x^2)^p]^2/(2*
x^2) + (b*p^2*PolyLog[2, (a + b*x^2)/a])/a

Maple [C] (warning: unable to verify)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.38 (sec) , antiderivative size = 481, normalized size of antiderivative = 6.01

method result size
risch \(-\frac {{\ln \left (\left (b \,x^{2}+a \right )^{p}\right )}^{2}}{2 x^{2}}+\frac {2 p b \ln \left (\left (b \,x^{2}+a \right )^{p}\right ) \ln \left (x \right )}{a}-\frac {p b \ln \left (\left (b \,x^{2}+a \right )^{p}\right ) \ln \left (b \,x^{2}+a \right )}{a}-\frac {2 p^{2} b \ln \left (x \right ) \ln \left (\frac {-b x +\sqrt {-a b}}{\sqrt {-a b}}\right )}{a}-\frac {2 p^{2} b \ln \left (x \right ) \ln \left (\frac {b x +\sqrt {-a b}}{\sqrt {-a b}}\right )}{a}-\frac {2 p^{2} b \operatorname {dilog}\left (\frac {-b x +\sqrt {-a b}}{\sqrt {-a b}}\right )}{a}-\frac {2 p^{2} b \operatorname {dilog}\left (\frac {b x +\sqrt {-a b}}{\sqrt {-a b}}\right )}{a}+\frac {p^{2} b \ln \left (b \,x^{2}+a \right )^{2}}{2 a}+\left (i \pi \,\operatorname {csgn}\left (i \left (b \,x^{2}+a \right )^{p}\right ) {\operatorname {csgn}\left (i c \left (b \,x^{2}+a \right )^{p}\right )}^{2}-i \pi \,\operatorname {csgn}\left (i \left (b \,x^{2}+a \right )^{p}\right ) \operatorname {csgn}\left (i c \left (b \,x^{2}+a \right )^{p}\right ) \operatorname {csgn}\left (i c \right )-i \pi {\operatorname {csgn}\left (i c \left (b \,x^{2}+a \right )^{p}\right )}^{3}+i \pi {\operatorname {csgn}\left (i c \left (b \,x^{2}+a \right )^{p}\right )}^{2} \operatorname {csgn}\left (i c \right )+2 \ln \left (c \right )\right ) \left (-\frac {\ln \left (\left (b \,x^{2}+a \right )^{p}\right )}{2 x^{2}}+p b \left (\frac {\ln \left (x \right )}{a}-\frac {\ln \left (b \,x^{2}+a \right )}{2 a}\right )\right )-\frac {{\left (i \pi \,\operatorname {csgn}\left (i \left (b \,x^{2}+a \right )^{p}\right ) {\operatorname {csgn}\left (i c \left (b \,x^{2}+a \right )^{p}\right )}^{2}-i \pi \,\operatorname {csgn}\left (i \left (b \,x^{2}+a \right )^{p}\right ) \operatorname {csgn}\left (i c \left (b \,x^{2}+a \right )^{p}\right ) \operatorname {csgn}\left (i c \right )-i \pi {\operatorname {csgn}\left (i c \left (b \,x^{2}+a \right )^{p}\right )}^{3}+i \pi {\operatorname {csgn}\left (i c \left (b \,x^{2}+a \right )^{p}\right )}^{2} \operatorname {csgn}\left (i c \right )+2 \ln \left (c \right )\right )}^{2}}{8 x^{2}}\) \(481\)

[In]

int(ln(c*(b*x^2+a)^p)^2/x^3,x,method=_RETURNVERBOSE)

[Out]

-1/2*ln((b*x^2+a)^p)^2/x^2+2*p*b*ln((b*x^2+a)^p)/a*ln(x)-p*b*ln((b*x^2+a)^p)/a*ln(b*x^2+a)-2*p^2*b/a*ln(x)*ln(
(-b*x+(-a*b)^(1/2))/(-a*b)^(1/2))-2*p^2*b/a*ln(x)*ln((b*x+(-a*b)^(1/2))/(-a*b)^(1/2))-2*p^2*b/a*dilog((-b*x+(-
a*b)^(1/2))/(-a*b)^(1/2))-2*p^2*b/a*dilog((b*x+(-a*b)^(1/2))/(-a*b)^(1/2))+1/2*p^2*b/a*ln(b*x^2+a)^2+(I*Pi*csg
n(I*(b*x^2+a)^p)*csgn(I*c*(b*x^2+a)^p)^2-I*Pi*csgn(I*(b*x^2+a)^p)*csgn(I*c*(b*x^2+a)^p)*csgn(I*c)-I*Pi*csgn(I*
c*(b*x^2+a)^p)^3+I*Pi*csgn(I*c*(b*x^2+a)^p)^2*csgn(I*c)+2*ln(c))*(-1/2/x^2*ln((b*x^2+a)^p)+p*b*(1/a*ln(x)-1/2/
a*ln(b*x^2+a)))-1/8*(I*Pi*csgn(I*(b*x^2+a)^p)*csgn(I*c*(b*x^2+a)^p)^2-I*Pi*csgn(I*(b*x^2+a)^p)*csgn(I*c*(b*x^2
+a)^p)*csgn(I*c)-I*Pi*csgn(I*c*(b*x^2+a)^p)^3+I*Pi*csgn(I*c*(b*x^2+a)^p)^2*csgn(I*c)+2*ln(c))^2/x^2

Fricas [F]

\[ \int \frac {\log ^2\left (c \left (a+b x^2\right )^p\right )}{x^3} \, dx=\int { \frac {\log \left ({\left (b x^{2} + a\right )}^{p} c\right )^{2}}{x^{3}} \,d x } \]

[In]

integrate(log(c*(b*x^2+a)^p)^2/x^3,x, algorithm="fricas")

[Out]

integral(log((b*x^2 + a)^p*c)^2/x^3, x)

Sympy [F]

\[ \int \frac {\log ^2\left (c \left (a+b x^2\right )^p\right )}{x^3} \, dx=\int \frac {\log {\left (c \left (a + b x^{2}\right )^{p} \right )}^{2}}{x^{3}}\, dx \]

[In]

integrate(ln(c*(b*x**2+a)**p)**2/x**3,x)

[Out]

Integral(log(c*(a + b*x**2)**p)**2/x**3, x)

Maxima [A] (verification not implemented)

none

Time = 0.20 (sec) , antiderivative size = 118, normalized size of antiderivative = 1.48 \[ \int \frac {\log ^2\left (c \left (a+b x^2\right )^p\right )}{x^3} \, dx=\frac {1}{2} \, b^{2} p^{2} {\left (\frac {\log \left (b x^{2} + a\right )^{2}}{a b} - \frac {2 \, {\left (2 \, \log \left (\frac {b x^{2}}{a} + 1\right ) \log \left (x\right ) + {\rm Li}_2\left (-\frac {b x^{2}}{a}\right )\right )}}{a b}\right )} - b p {\left (\frac {\log \left (b x^{2} + a\right )}{a} - \frac {\log \left (x^{2}\right )}{a}\right )} \log \left ({\left (b x^{2} + a\right )}^{p} c\right ) - \frac {\log \left ({\left (b x^{2} + a\right )}^{p} c\right )^{2}}{2 \, x^{2}} \]

[In]

integrate(log(c*(b*x^2+a)^p)^2/x^3,x, algorithm="maxima")

[Out]

1/2*b^2*p^2*(log(b*x^2 + a)^2/(a*b) - 2*(2*log(b*x^2/a + 1)*log(x) + dilog(-b*x^2/a))/(a*b)) - b*p*(log(b*x^2
+ a)/a - log(x^2)/a)*log((b*x^2 + a)^p*c) - 1/2*log((b*x^2 + a)^p*c)^2/x^2

Giac [F]

\[ \int \frac {\log ^2\left (c \left (a+b x^2\right )^p\right )}{x^3} \, dx=\int { \frac {\log \left ({\left (b x^{2} + a\right )}^{p} c\right )^{2}}{x^{3}} \,d x } \]

[In]

integrate(log(c*(b*x^2+a)^p)^2/x^3,x, algorithm="giac")

[Out]

integrate(log((b*x^2 + a)^p*c)^2/x^3, x)

Mupad [F(-1)]

Timed out. \[ \int \frac {\log ^2\left (c \left (a+b x^2\right )^p\right )}{x^3} \, dx=\int \frac {{\ln \left (c\,{\left (b\,x^2+a\right )}^p\right )}^2}{x^3} \,d x \]

[In]

int(log(c*(a + b*x^2)^p)^2/x^3,x)

[Out]

int(log(c*(a + b*x^2)^p)^2/x^3, x)